Skip to main content
Version: 2.18

Data Classes

In Haystack, there are a handful of core classes that are regularly used in many different places. These are classes that carry data through the system and you are likely to interact with these as either the input or output of your pipeline.

Haystack uses data classes to help components communicate with each other in a simple and modular way. By doing this, data flows seamlessly through the Haystack pipelines. This page goes over the available data classes in Haystack: ByteStream, Answer (along with its variants ExtractedAnswer and GeneratedAnswer), ChatMessage, Document, and StreamingChunk, explaining how they contribute to the Haystack ecosystem.

You can check out the detailed parameters in our Data Classes API reference.

Answer

Overview

The Answer class serves as the base for responses generated within Haystack, containing the answer's data, the originating query, and additional metadata.

Key Features

  • Adaptable data handling, accommodating any data type (data).
  • Query tracking for contextual relevance (query).
  • Extensive metadata support for detailed answer description.

Attributes

python
@dataclass(frozen=True)
class Answer:
data: Any
query: str
meta: Dict[str, Any]

ExtractedAnswer

Overview

ExtractedAnswer is a subclass of Answer that deals explicitly with answers derived from Documents, offering more detailed attributes.

Key Features

  • Includes reference to the originating Document.
  • Score attribute to quantify the answer's confidence level.
  • Optional start and end indices for pinpointing answer location within the source.

Attributes

python
@dataclass
class ExtractedAnswer:
query: str
score: float
data: Optional[str] = None
document: Optional[Document] = None
context: Optional[str] = None
document_offset: Optional["Span"] = None
context_offset: Optional["Span"] = None
meta: Dict[str, Any] = field(default_factory=dict)

GeneratedAnswer

Overview

GeneratedAnswer extends the Answer class to accommodate answers generated from multiple Documents.

Key Features

  • Handles string-type data.
  • Links to a list of Document objects, enhancing answer traceability.

Attributes

python
@dataclass
class GeneratedAnswer:
data: str
query: str
documents: List[Document]
meta: Dict[str, Any] = field(default_factory=dict)

ByteStream

Overview

ByteStream represents binary object abstraction in the Haystack framework and is crucial for handling various binary data formats.

Key Features

  • Holds binary data and associated metadata.
  • Optional MIME type specification for flexibility.
  • File interaction methods (to_file, from_file_path, from_string) for easy data manipulation.

Attributes

python
@dataclass(frozen=True)
class ByteStream:
data: bytes
metadata: Dict[str, Any] = field(default_factory=dict, hash=False)
mime_type: Optional[str] = field(default=None)

Example

python
from haystack.dataclasses.byte_stream import ByteStream

image = ByteStream.from_file_path("dog.jpg")

ChatMessage

ChatMessage is the central abstraction to represent a message for a LLM. It contains role, metadata and several types of content, including text, tool calls and tool calls results.

Read the detailed documentation for the ChatMessage data class on a dedicated ChatMessage page.

Document

Overview

Document represents a central data abstraction in Haystack, capable of holding text, tables, and binary data.

Key Features

  • Unique ID for each document.
  • Multiple content types are supported: text, binary (blob).
  • Custom metadata and scoring for advanced document management.
  • Optional embedding for AI-based applications.

Attributes

python
@dataclass
class Document(metaclass=_BackwardCompatible):
id: str = field(default="")
content: Optional[str] = field(default=None)
blob: Optional[ByteStream] = field(default=None)
meta: Dict[str, Any] = field(default_factory=dict)
score: Optional[float] = field(default=None)
embedding: Optional[List[float]] = field(default=None)
sparse_embedding: Optional[SparseEmbedding] = field(default=None)

Example

python
from haystack import Document

documents = Document(content="Here are the contents of your document", embedding=[0.1]*768)

StreamingChunk

Overview

StreamingChunk represents a partially streamed LLM response, enabling real-time LLM response processing. It encapsulates a segment of streamed content along with associated metadata and provides comprehensive information about the streaming state.

Key Features

  • String-based content representation for text chunks
  • Support for tool calls and tool call results
  • Component tracking and metadata management
  • Streaming state indicators (start, finish reason)
  • Content block indexing for multi-part responses

Attributes

python
@dataclass
class StreamingChunk:
content: str
meta: dict[str, Any] = field(default_factory=dict, hash=False)
component_info: Optional[ComponentInfo] = field(default=None)
index: Optional[int] = field(default=None)
tool_calls: Optional[list[ToolCallDelta]] = field(default=None)
tool_call_result: Optional[ToolCallResult] = field(default=None)
start: bool = field(default=False)
finish_reason: Optional[FinishReason] = field(default=None)

Example

python
from haystack.dataclasses.streaming_chunk import StreamingChunk, ComponentInfo

## Basic text chunk
chunk = StreamingChunk(
content="Hello world",
start=True,
meta={"model": "gpt-3.5-turbo"}
)

## Tool call chunk
tool_chunk = StreamingChunk(
tool_calls=[ToolCallDelta(index=0, tool_name="calculator", arguments='{"operation": "add", "a": 2, "b": 3}')],
index=0,
start=False,
finish_reason="tool_calls"
)

ToolCallDelta

Overview

ToolCallDelta represents a tool call prepared by the model, usually contained in an assistant message during streaming.

Attributes

python
@dataclass
class ToolCallDelta:
index: int
tool_name: Optional[str] = field(default=None)
arguments: Optional[str] = field(default=None)
id: Optional[str] = field(default=None)

ComponentInfo

Overview

The ComponentInfo class represents information about a component within a Haystack pipeline. It is used to track the type and name of components that generate or process data, aiding in debugging, tracing, and metadata management throughout the pipeline.

Key Features

  • Stores the type of the component (including module and class name).
  • Optionally stores the name assigned to the component in the pipeline.
  • Provides a convenient class method to create a ComponentInfo instance from a Component object.

Attributes

python
@dataclass
class ComponentInfo:
type: str
name: Optional[str] = field(default=None)

@classmethod
def from_component(cls, component: Component) -> "ComponentInfo":
...

Example

python
from haystack.dataclasses.streaming_chunk import ComponentInfo
from haystack.core.component import Component

class MyComponent(Component):
...

component = MyComponent()
info = ComponentInfo.from_component(component)
print(info.type) # e.g., 'my_module.MyComponent'
print(info.name) # Name assigned in the pipeline, if any

SparseEmbedding

Overview

The SparseEmbedding class represents a sparse embedding: a vector where most values are zeros.

Attributes

  • indices: List of indices of non-zero elements in the embedding.
  • values: List of values of non-zero elements in the embedding.

Tool

Tool is a data class representing a tool that Language Models can prepare a call for.

Read the detailed documentation for the Tool data class on a dedicated Tool page.