VertexAIGeminiChatGenerator
VertexAIGeminiChatGenerator enables chat completion using Google Gemini models.
Deprecation Notice
This integration uses the deprecated google-generativeai SDK, which will lose support after August 2025.
We recommend switching to the new GoogleGenAIChatGenerator integration instead.
| Most common position in a pipeline | After a ChatPromptBuilder |
| Mandatory run variables | “messages”: A list of ChatMessage objects representing the chat |
| Output variables | “replies”: A list of alternative replies of the model to the input chat |
| API reference | Google Vertex |
| GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/google_vertex |
VertexAIGeminiGenerator supports gemini-1.5-pro and gemini-1.5-flash/ gemini-2.0-flash models. Note that Google recommends upgrading from gemini-1.5-pro to gemini-2.0-flash.
For available models, see https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models.
To explore the full capabilities of Gemini check out this article and the related 🧑🍳 Cookbook.
Parameters Overview
VertexAIGeminiChatGenerator uses Google Cloud Application Default Credentials (ADCs) for authentication. For more information on how to set up ADCs, see the official documentation.
Keep in mind that it’s essential to use an account that has access to a project authorized to use Google Vertex AI endpoints.
You can find your project ID in the GCP resource manager or locally by running gcloud projects list in your terminal. For more info on the gcloud CLI, see its official documentation.
Streaming
This Generator supports streaming the tokens from the LLM directly in output. To do so, pass a function to the streaming_callback init parameter.
Usage
You need to install the google-vertex-haystack package to use the VertexAIGeminiChatGenerator:
On its own
Basic usage:
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.google_vertex import VertexAIGeminiChatGenerator
gemini_chat = VertexAIGeminiChatGenerator()
messages = [ChatMessage.from_user("Tell me the name of a movie")]
res = gemini_chat.run(messages)
print(res["replies"][0].text)
messages += [res["replies"][0], ChatMessage.from_user("Who's the main actor?")]
res = gemini_chat.run(messages)
print(res["replies"][0].text)
When chatting with Gemini Pro, you can also easily use function calls. First, define the function locally and convert into a Tool:
from typing import Annotated
from haystack.tools import create_tool_from_function
## example function to get the current weather
def get_current_weather(
location: Annotated[str, "The city for which to get the weather, e.g. 'San Francisco'"] = "Munich",
unit: Annotated[str, "The unit for the temperature, e.g. 'celsius'"] = "celsius",
) -> str:
return f"The weather in {location} is sunny. The temperature is 20 {unit}."
tool = create_tool_from_function(get_current_weather)
Create a new instance of VertexAIGeminiChatGenerator to set the tools and a ToolInvoker to invoke the tools.:
from haystack_integrations.components.generators.google_vertex import VertexAIGeminiChatGenerator
from haystack.components.tools import ToolInvoker
gemini_chat = VertexAIGeminiChatGenerator(model="gemini-2.0-flash-exp", tools=[tool])
tool_invoker = ToolInvoker(tools=[tool])
And then ask our question:
from haystack.dataclasses import ChatMessage
messages = [ChatMessage.from_user("What is the temperature in celsius in Berlin?")]
res = gemini_chat.run(messages=messages)
print(res["replies"][0].tool_calls)
tool_messages = tool_invoker.run(messages=replies)["tool_messages"]
messages = user_message + replies + tool_messages
messages += res["replies"][0] + [ChatMessage.from_function(content=weather, name="get_current_weather")]
final_replies = gemini_chat.run(messages=messages)["replies"]
print(final_replies[0].text)
In a pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
from haystack import Pipeline
from haystack_integrations.components.generators.google_vertex import VertexAIGeminiChatGenerator
## no parameter init, we don't use any runtime template variables
prompt_builder = ChatPromptBuilder()
gemini_chat = VertexAIGeminiChatGenerator()
pipe = Pipeline()
pipe.add_component("prompt_builder", prompt_builder)
pipe.add_component("gemini", gemini)
pipe.connect("prompt_builder.prompt", "gemini.messages")
location = "Rome"
messages = [ChatMessage.from_user("Tell me briefly about {{location}} history")]
res = pipe.run(data={"prompt_builder": {"template_variables":{"location": location}, "template": messages}})
print(res)
Additional References
:cook: Cookbook: Function Calling and Multimodal QA with Gemini