Skip to main content
Version: 2.18

AIMLAPI

Module haystack_integrations.components.generators.aimlapi.chat.chat_generator

AIMLAPIChatGenerator

Enables text generation using AIMLAPI generative models. For supported models, see AIMLAPI documentation.

Users can pass any text generation parameters valid for the AIMLAPI chat completion API directly to this component using the generation_kwargs parameter in __init__ or the generation_kwargs parameter in run method.

Key Features and Compatibility:

  • Primary Compatibility: Designed to work seamlessly with the AIMLAPI chat completion endpoint.
  • Streaming Support: Supports streaming responses from the AIMLAPI chat completion endpoint.
  • Customizability: Supports all parameters supported by the AIMLAPI chat completion endpoint.

This component uses the ChatMessage format for structuring both input and output, ensuring coherent and contextually relevant responses in chat-based text generation scenarios. Details on the ChatMessage format can be found in the Haystack docs

For more details on the parameters supported by the AIMLAPI API, refer to the AIMLAPI documentation.

Usage example:

python
from haystack_integrations.components.generators.aimlapi import AIMLAPIChatGenerator
from haystack.dataclasses import ChatMessage

messages = [ChatMessage.from_user("What's Natural Language Processing?")]

client = AIMLAPIChatGenerator(model="openai/gpt-5-chat-latest")
response = client.run(messages)
print(response)

>>{'replies': [ChatMessage(_content='Natural Language Processing (NLP) is a branch of artificial intelligence
>>that focuses on enabling computers to understand, interpret, and generate human language in a way that is
>>meaningful and useful.', _role=<ChatRole.ASSISTANT: 'assistant'>, _name=None,
>>_meta={'model': 'openai/gpt-5-chat-latest', 'index': 0, 'finish_reason': 'stop',
>>'usage': {'prompt_tokens': 15, 'completion_tokens': 36, 'total_tokens': 51}})]}

AIMLAPIChatGenerator.__init__

python
def __init__(*,
api_key: Secret = Secret.from_env_var("AIMLAPI_API_KEY"),
model: str = "openai/gpt-5-chat-latest",
streaming_callback: Optional[StreamingCallbackT] = None,
api_base_url: Optional[str] = "https://api.aimlapi.com/v1",
generation_kwargs: Optional[Dict[str, Any]] = None,
tools: Optional[Union[List[Tool], Toolset]] = None,
timeout: Optional[float] = None,
extra_headers: Optional[Dict[str, Any]] = None,
max_retries: Optional[int] = None,
http_client_kwargs: Optional[Dict[str, Any]] = None)

Creates an instance of AIMLAPIChatGenerator. Unless specified otherwise,

the default model is openai/gpt-5-chat-latest.

Arguments:

  • api_key: The AIMLAPI API key.
  • model: The name of the AIMLAPI chat completion model to use.
  • streaming_callback: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.
  • api_base_url: The AIMLAPI API Base url. For more details, see AIMLAPI documentation.
  • generation_kwargs: Other parameters to use for the model. These parameters are all sent directly to the AIMLAPI endpoint. See AIMLAPI API docs for more details. Some of the supported parameters:
  • max_tokens: The maximum number of tokens the output text can have.
  • temperature: What sampling temperature to use. Higher values mean the model will take more risks. Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.
  • top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
  • stream: Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message.
  • safe_prompt: Whether to inject a safety prompt before all conversations.
  • random_seed: The seed to use for random sampling.
  • tools: A list of tools or a Toolset for which the model can prepare calls. This parameter can accept either a list of Tool objects or a Toolset instance.
  • timeout: The timeout for the AIMLAPI API call.
  • extra_headers: Additional HTTP headers to include in requests to the AIMLAPI API.
  • max_retries: Maximum number of retries to contact AIMLAPI after an internal error. If not set, it defaults to either the AIMLAPI_MAX_RETRIES environment variable, or set to 5.
  • http_client_kwargs: A dictionary of keyword arguments to configure a custom httpx.Clientor httpx.AsyncClient. For more information, see the HTTPX documentation.

AIMLAPIChatGenerator.to_dict

python
def to_dict() -> Dict[str, Any]

Serialize this component to a dictionary.

Returns:

The serialized component as a dictionary.

AIMLAPIChatGenerator.from_dict

python
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "OpenAIChatGenerator"

Deserialize this component from a dictionary.

Arguments:

  • data: The dictionary representation of this component.

Returns:

The deserialized component instance.

AIMLAPIChatGenerator.run

python
@component.output_types(replies=list[ChatMessage])
def run(messages: list[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
generation_kwargs: Optional[dict[str, Any]] = None,
*,
tools: Optional[ToolsType] = None,
tools_strict: Optional[bool] = None)

Invokes chat completion based on the provided messages and generation parameters.

Arguments:

  • messages: A list of ChatMessage instances representing the input messages.
  • streaming_callback: A callback function that is called when a new token is received from the stream.
  • generation_kwargs: Additional keyword arguments for text generation. These parameters will override the parameters passed during component initialization. For details on OpenAI API parameters, see OpenAI documentation.
  • tools: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls. If set, it will override the tools parameter provided during initialization.
  • tools_strict: Whether to enable strict schema adherence for tool calls. If set to True, the model will follow exactly the schema provided in the parameters field of the tool definition, but this may increase latency. If set, it will override the tools_strict parameter set during component initialization.

Returns:

A dictionary with the following key:

  • replies: A list containing the generated responses as ChatMessage instances.

AIMLAPIChatGenerator.run_async

python
@component.output_types(replies=list[ChatMessage])
async def run_async(messages: list[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
generation_kwargs: Optional[dict[str, Any]] = None,
*,
tools: Optional[ToolsType] = None,
tools_strict: Optional[bool] = None)

Asynchronously invokes chat completion based on the provided messages and generation parameters.

This is the asynchronous version of the run method. It has the same parameters and return values but can be used with await in async code.

Arguments:

  • messages: A list of ChatMessage instances representing the input messages.
  • streaming_callback: A callback function that is called when a new token is received from the stream. Must be a coroutine.
  • generation_kwargs: Additional keyword arguments for text generation. These parameters will override the parameters passed during component initialization. For details on OpenAI API parameters, see OpenAI documentation.
  • tools: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls. If set, it will override the tools parameter provided during initialization.
  • tools_strict: Whether to enable strict schema adherence for tool calls. If set to True, the model will follow exactly the schema provided in the parameters field of the tool definition, but this may increase latency. If set, it will override the tools_strict parameter set during component initialization.

Returns:

A dictionary with the following key:

  • replies: A list containing the generated responses as ChatMessage instances.