Skip to main content
Version: 2.20-unstable

MCP

Module haystack_integrations.tools.mcp.mcp_tool

AsyncExecutor

Thread-safe event loop executor for running async code from sync contexts.

AsyncExecutor.get_instance

python
@classmethod
def get_instance(cls) -> "AsyncExecutor"

Get or create the global singleton executor instance.

AsyncExecutor.__init__

python
def __init__()

Initialize a dedicated event loop

AsyncExecutor.run

python
def run(coro: Coroutine[Any, Any, Any], timeout: float | None = None) -> Any

Run a coroutine in the event loop.

Arguments:

  • coro: Coroutine to execute
  • timeout: Optional timeout in seconds

Raises:

  • TimeoutError: If execution exceeds timeout

Returns:

Result of the coroutine

AsyncExecutor.get_loop

python
def get_loop()

Get the event loop.

Returns:

The event loop

AsyncExecutor.run_background

python
def run_background(
coro_factory: Callable[[asyncio.Event], Coroutine[Any, Any, Any]],
timeout: float | None = None
) -> tuple[concurrent.futures.Future[Any], asyncio.Event]

Schedule coro_factory to run in the executor's event loop without blocking the

caller thread.

The factory receives an :class:asyncio.Event that can be used to cooperatively shut the coroutine down. The method returns both the concurrent future (to observe completion or failure) and the created stop_event so that callers can signal termination.

Arguments:

  • coro_factory: A callable receiving the stop_event and returning the coroutine to execute.
  • timeout: Optional timeout while waiting for the stop_event to be created.

Returns:

Tuple (future, stop_event).

AsyncExecutor.shutdown

python
def shutdown(timeout: float = 2) -> None

Shut down the background event loop and thread.

Arguments:

  • timeout: Timeout in seconds for shutting down the event loop

MCPError

Base class for MCP-related errors.

MCPError.__init__

python
def __init__(message: str) -> None

Initialize the MCPError.

Arguments:

  • message: Descriptive error message

MCPConnectionError

Error connecting to MCP server.

MCPConnectionError.__init__

python
def __init__(message: str,
server_info: "MCPServerInfo | None" = None,
operation: str | None = None) -> None

Initialize the MCPConnectionError.

Arguments:

  • message: Descriptive error message
  • server_info: Server connection information that was used
  • operation: Name of the operation that was being attempted

MCPToolNotFoundError

Error when a tool is not found on the server.

MCPToolNotFoundError.__init__

python
def __init__(message: str,
tool_name: str,
available_tools: list[str] | None = None) -> None

Initialize the MCPToolNotFoundError.

Arguments:

  • message: Descriptive error message
  • tool_name: Name of the tool that was requested but not found
  • available_tools: List of available tool names, if known

MCPInvocationError

Error during tool invocation.

MCPInvocationError.__init__

python
def __init__(message: str,
tool_name: str,
tool_args: dict[str, Any] | None = None) -> None

Initialize the MCPInvocationError.

Arguments:

  • message: Descriptive error message
  • tool_name: Name of the tool that was being invoked
  • tool_args: Arguments that were passed to the tool

MCPClient

Abstract base class for MCP clients.

This class defines the common interface and shared functionality for all MCP clients, regardless of the transport mechanism used.

MCPClient.connect

python
@abstractmethod
async def connect() -> list[types.Tool]

Connect to an MCP server.

Raises:

  • MCPConnectionError: If connection to the server fails

Returns:

List of available tools on the server

MCPClient.call_tool

python
async def call_tool(tool_name: str, tool_args: dict[str, Any]) -> str

Call a tool on the connected MCP server.

Arguments:

  • tool_name: Name of the tool to call
  • tool_args: Arguments to pass to the tool

Raises:

  • MCPConnectionError: If not connected to an MCP server
  • MCPInvocationError: If the tool invocation fails

Returns:

JSON string representation of the tool invocation result

MCPClient.aclose

python
async def aclose() -> None

Close the connection and clean up resources.

This method ensures all resources are properly released, even if errors occur.

StdioClient

MCP client that connects to servers using stdio transport.

StdioClient.__init__

python
def __init__(command: str,
args: list[str] | None = None,
env: dict[str, str | Secret] | None = None,
max_retries: int = 3,
base_delay: float = 1.0,
max_delay: float = 30.0) -> None

Initialize a stdio MCP client.

Arguments:

  • command: Command to run (e.g., "python", "node")
  • args: Arguments to pass to the command
  • env: Environment variables for the command
  • max_retries: Maximum number of reconnection attempts
  • base_delay: Base delay for exponential backoff in seconds

StdioClient.connect

python
async def connect() -> list[types.Tool]

Connect to an MCP server using stdio transport.

Raises:

  • MCPConnectionError: If connection to the server fails

Returns:

List of available tools on the server

SSEClient

MCP client that connects to servers using SSE transport.

SSEClient.__init__

python
def __init__(server_info: "SSEServerInfo",
max_retries: int = 3,
base_delay: float = 1.0,
max_delay: float = 30.0) -> None

Initialize an SSE MCP client using server configuration.

Arguments:

  • server_info: Configuration object containing URL, token, timeout, etc.
  • max_retries: Maximum number of reconnection attempts
  • base_delay: Base delay for exponential backoff in seconds

SSEClient.connect

python
async def connect() -> list[types.Tool]

Connect to an MCP server using SSE transport.

Raises:

  • MCPConnectionError: If connection to the server fails

Returns:

List of available tools on the server

StreamableHttpClient

MCP client that connects to servers using streamable HTTP transport.

StreamableHttpClient.__init__

python
def __init__(server_info: "StreamableHttpServerInfo",
max_retries: int = 3,
base_delay: float = 1.0,
max_delay: float = 30.0) -> None

Initialize a streamable HTTP MCP client using server configuration.

Arguments:

  • server_info: Configuration object containing URL, token, timeout, etc.
  • max_retries: Maximum number of reconnection attempts
  • base_delay: Base delay for exponential backoff in seconds

StreamableHttpClient.connect

python
async def connect() -> list[types.Tool]

Connect to an MCP server using streamable HTTP transport.

Raises:

  • MCPConnectionError: If connection to the server fails

Returns:

List of available tools on the server

MCPServerInfo

Abstract base class for MCP server connection parameters.

This class defines the common interface for all MCP server connection types.

MCPServerInfo.create_client

python
@abstractmethod
def create_client() -> MCPClient

Create an appropriate MCP client for this server info.

Returns:

An instance of MCPClient configured with this server info

MCPServerInfo.to_dict

python
def to_dict() -> dict[str, Any]

Serialize this server info to a dictionary.

Returns:

Dictionary representation of this server info

MCPServerInfo.from_dict

python
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "MCPServerInfo"

Deserialize server info from a dictionary.

Arguments:

  • data: Dictionary containing serialized server info

Returns:

Instance of the appropriate server info class

SSEServerInfo

Data class that encapsulates SSE MCP server connection parameters.

For authentication tokens containing sensitive data, you can use Secret objects for secure handling and serialization:

python
server_info = SSEServerInfo(
url="https://my-mcp-server.com",
token=Secret.from_env_var("API_KEY"),
)

Arguments:

  • url: Full URL of the MCP server (including /sse endpoint)
  • base_url: Base URL of the MCP server (deprecated, use url instead)
  • token: Authentication token for the server (optional)
  • timeout: Connection timeout in seconds

base_url

deprecated

SSEServerInfo.__post_init__

python
def __post_init__()

Validate that either url or base_url is provided.

SSEServerInfo.create_client

python
def create_client() -> MCPClient

Create an SSE MCP client.

Returns:

Configured MCPClient instance

StreamableHttpServerInfo

Data class that encapsulates streamable HTTP MCP server connection parameters.

For authentication tokens containing sensitive data, you can use Secret objects for secure handling and serialization:

python
server_info = StreamableHttpServerInfo(
url="https://my-mcp-server.com",
token=Secret.from_env_var("API_KEY"),
)

Arguments:

  • url: Full URL of the MCP server (streamable HTTP endpoint)
  • token: Authentication token for the server (optional)
  • timeout: Connection timeout in seconds

StreamableHttpServerInfo.__post_init__

python
def __post_init__()

Validate the URL.

StreamableHttpServerInfo.create_client

python
def create_client() -> MCPClient

Create a streamable HTTP MCP client.

Returns:

Configured StreamableHttpClient instance

StdioServerInfo

Data class that encapsulates stdio MCP server connection parameters.

Arguments:

  • command: Command to run (e.g., "python", "node")
  • args: Arguments to pass to the command
  • env: Environment variables for the command For environment variables containing sensitive data, you can use Secret objects for secure handling and serialization:
python
server_info = StdioServerInfo(
command="uv",
args=["run", "my-mcp-server"],
env={
"WORKSPACE_PATH": "/path/to/workspace", # Plain string
"API_KEY": Secret.from_env_var("API_KEY"), # Secret object
}
)

Secret objects will be properly serialized and deserialized without exposing the secret value, while plain strings will be preserved as-is. Use Secret objects for sensitive data that needs to be handled securely.

StdioServerInfo.create_client

python
def create_client() -> MCPClient

Create a stdio MCP client.

Returns:

Configured StdioMCPClient instance

MCPTool

A Tool that represents a single tool from an MCP server.

This implementation uses the official MCP SDK for protocol handling while maintaining compatibility with the Haystack tool ecosystem.

Response handling:

  • Text and image content are supported and returned as JSON strings
  • The JSON contains the structured response from the MCP server
  • Use json.loads() to parse the response into a dictionary

Example using Streamable HTTP:

python
import json
from haystack_integrations.tools.mcp import MCPTool, StreamableHttpServerInfo

# Create tool instance
tool = MCPTool(
name="multiply",
server_info=StreamableHttpServerInfo(url="http://localhost:8000/mcp")
)

# Use the tool and parse result
result_json = tool.invoke(a=5, b=3)
result = json.loads(result_json)

Example using SSE (deprecated):

python
import json
from haystack.tools import MCPTool, SSEServerInfo

# Create tool instance
tool = MCPTool(
name="add",
server_info=SSEServerInfo(url="http://localhost:8000/sse")
)

# Use the tool and parse result
result_json = tool.invoke(a=5, b=3)
result = json.loads(result_json)

Example using stdio:

python
import json
from haystack.tools import MCPTool, StdioServerInfo

# Create tool instance
tool = MCPTool(
name="get_current_time",
server_info=StdioServerInfo(command="python", args=["path/to/server.py"])
)

# Use the tool and parse result
result_json = tool.invoke(timezone="America/New_York")
result = json.loads(result_json)

MCPTool.__init__

python
def __init__(name: str,
server_info: MCPServerInfo,
description: str | None = None,
connection_timeout: int = 30,
invocation_timeout: int = 30,
eager_connect: bool = False)

Initialize the MCP tool.

Arguments:

  • name: Name of the tool to use
  • server_info: Server connection information
  • description: Custom description (if None, server description will be used)
  • connection_timeout: Timeout in seconds for server connection
  • invocation_timeout: Default timeout in seconds for tool invocations
  • eager_connect: If True, connect to server during initialization. If False (default), defer connection until warm_up or first tool use, whichever comes first.

Raises:

  • MCPConnectionError: If connection to the server fails
  • MCPToolNotFoundError: If no tools are available or the requested tool is not found
  • TimeoutError: If connection times out

MCPTool.ainvoke

python
async def ainvoke(**kwargs: Any) -> str

Asynchronous tool invocation.

Arguments:

  • kwargs: Arguments to pass to the tool

Raises:

  • MCPInvocationError: If the tool invocation fails
  • TimeoutError: If the operation times out

Returns:

JSON string representation of the tool invocation result

MCPTool.warm_up

python
def warm_up() -> None

Connect and fetch the tool schema if eager_connect is turned off.

MCPTool.to_dict

python
def to_dict() -> dict[str, Any]

Serializes the MCPTool to a dictionary.

The serialization preserves all information needed to recreate the tool, including server connection parameters and timeout settings. Note that the active connection is not maintained.

Returns:

Dictionary with serialized data in the format: {"type": fully_qualified_class_name, "data": {parameters}}

MCPTool.from_dict

python
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "Tool"

Deserializes the MCPTool from a dictionary.

This method reconstructs an MCPTool instance from a serialized dictionary, including recreating the server_info object. A new connection will be established to the MCP server during initialization.

Arguments:

  • data: Dictionary containing serialized tool data

Raises:

  • None: Various exceptions if connection fails

Returns:

A fully initialized MCPTool instance

MCPTool.close

python
def close()

Close the tool synchronously.

MCPTool.__del__

python
def __del__()

Cleanup resources when the tool is garbage collected.

MCPTool.tool_spec

python
@property
def tool_spec() -> dict[str, Any]

Return the Tool specification to be used by the Language Model.

MCPTool.invoke

python
def invoke(**kwargs: Any) -> Any

Invoke the Tool with the provided keyword arguments.

_MCPClientSessionManager

Runs an MCPClient connect/close inside the AsyncExecutor's event loop.

Life-cycle:

  1. Create the worker to schedule a long-running coroutine in the dedicated background loop.
  2. The coroutine calls connect on mcp client; when it has the tool list it fulfils a concurrent future so the synchronous thread can continue.
  3. It then waits on an asyncio.Event.
  4. stop() sets the event from any thread. The same coroutine then calls close() on mcp client and finishes without the dreaded Attempted to exit cancel scope in a different task than it was entered in error thus properly closing the client.

_MCPClientSessionManager.tools

python
def tools() -> list[types.Tool]

Return the tool list already collected during startup.

_MCPClientSessionManager.stop

python
def stop() -> None

Request the worker to shut down and block until done.

Module haystack_integrations.tools.mcp.mcp_toolset

MCPToolset

A Toolset that connects to an MCP (Model Context Protocol) server and provides access to its tools.

MCPToolset dynamically discovers and loads all tools from any MCP-compliant server, supporting both network-based streaming connections (Streamable HTTP, SSE) and local process-based stdio connections. This dual connectivity allows for integrating with both remote and local MCP servers.

Example using MCPToolset in a Haystack Pipeline:

python
# Prerequisites:
# 1. pip install uvx mcp-server-time # Install required MCP server and tools
# 2. export OPENAI_API_KEY="your-api-key" # Set up your OpenAI API key

import os
from haystack import Pipeline
from haystack.components.converters import OutputAdapter
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.tools import ToolInvoker
from haystack.dataclasses import ChatMessage
from haystack_integrations.tools.mcp import MCPToolset, StdioServerInfo

# Create server info for the time service (can also use SSEServerInfo for remote servers)
server_info = StdioServerInfo(command="uvx", args=["mcp-server-time", "--local-timezone=Europe/Berlin"])

# Create the toolset - this will automatically discover all available tools
# You can optionally specify which tools to include
mcp_toolset = MCPToolset(
server_info=server_info,
tool_names=["get_current_time"] # Only include the get_current_time tool
)

# Create a pipeline with the toolset
pipeline = Pipeline()
pipeline.add_component("llm", OpenAIChatGenerator(model="gpt-4o-mini", tools=mcp_toolset))
pipeline.add_component("tool_invoker", ToolInvoker(tools=mcp_toolset))
pipeline.add_component(
"adapter",
OutputAdapter(
template="{{ initial_msg + initial_tool_messages + tool_messages }}",
output_type=list[ChatMessage],
unsafe=True,
),
)
pipeline.add_component("response_llm", OpenAIChatGenerator(model="gpt-4o-mini"))
pipeline.connect("llm.replies", "tool_invoker.messages")
pipeline.connect("llm.replies", "adapter.initial_tool_messages")
pipeline.connect("tool_invoker.tool_messages", "adapter.tool_messages")
pipeline.connect("adapter.output", "response_llm.messages")

# Run the pipeline with a user question
user_input = "What is the time in New York? Be brief."
user_input_msg = ChatMessage.from_user(text=user_input)

result = pipeline.run({"llm": {"messages": [user_input_msg]}, "adapter": {"initial_msg": [user_input_msg]}})
print(result["response_llm"]["replies"][0].text)

You can also use the toolset via Streamable HTTP to talk to remote servers:

python
from haystack_integrations.tools.mcp import MCPToolset, StreamableHttpServerInfo

# Create the toolset with streamable HTTP connection
toolset = MCPToolset(
server_info=StreamableHttpServerInfo(url="http://localhost:8000/mcp"),
tool_names=["multiply"] # Optional: only include specific tools
)
# Use the toolset as shown in the pipeline example above

Example using SSE (deprecated):

python
from haystack_integrations.tools.mcp import MCPToolset, SSEServerInfo
from haystack.components.tools import ToolInvoker

# Create the toolset with an SSE connection
sse_toolset = MCPToolset(
server_info=SSEServerInfo(url="http://some-remote-server.com:8000/sse"),
tool_names=["add", "subtract"] # Only include specific tools
)

# Use the toolset as shown in the pipeline example above

MCPToolset.__init__

python
def __init__(server_info: MCPServerInfo,
tool_names: list[str] | None = None,
connection_timeout: float = 30.0,
invocation_timeout: float = 30.0,
eager_connect: bool = False)

Initialize the MCP toolset.

Arguments:

  • server_info: Connection information for the MCP server
  • tool_names: Optional list of tool names to include. If provided, only tools with matching names will be added to the toolset.
  • connection_timeout: Timeout in seconds for server connection
  • invocation_timeout: Default timeout in seconds for tool invocations
  • eager_connect: If True, connect to server and load tools during initialization. If False (default), defer connection to warm_up.

Raises:

  • MCPToolNotFoundError: If any of the specified tool names are not found on the server

MCPToolset.warm_up

python
def warm_up() -> None

Connect and load tools when eager_connect is turned off.

This method is automatically called by ToolInvoker.warm_up() and Pipeline.warm_up(). You can also call it directly before using the toolset to ensure all tool schemas are available without performing a real invocation.

MCPToolset.to_dict

python
def to_dict() -> dict[str, Any]

Serialize the MCPToolset to a dictionary.

Returns:

A dictionary representation of the MCPToolset

MCPToolset.from_dict

python
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "MCPToolset"

Deserialize an MCPToolset from a dictionary.

Arguments:

  • data: Dictionary representation of the MCPToolset

Returns:

A new MCPToolset instance

MCPToolset.close

python
def close()

Close the underlying MCP client safely.

MCPToolset.__post_init__

python
def __post_init__()

Validate and set up the toolset after initialization.

This handles the case when tools are provided during initialization.

MCPToolset.__iter__

python
def __iter__() -> Iterator[Tool]

Return an iterator over the Tools in this Toolset.

This allows the Toolset to be used wherever a list of Tools is expected.

Returns:

An iterator yielding Tool instances

MCPToolset.__contains__

python
def __contains__(item: Any) -> bool

Check if a tool is in this Toolset.

Supports checking by:

  • Tool instance: tool in toolset
  • Tool name: "tool_name" in toolset

Arguments:

  • item: Tool instance or tool name string

Returns:

True if contained, False otherwise

MCPToolset.add

python
def add(tool: Union[Tool, "Toolset"]) -> None

Add a new Tool or merge another Toolset.

Arguments:

  • tool: A Tool instance or another Toolset to add

Raises:

  • ValueError: If adding the tool would result in duplicate tool names
  • TypeError: If the provided object is not a Tool or Toolset

MCPToolset.__add__

python
def __add__(other: Union[Tool, "Toolset", list[Tool]]) -> "Toolset"

Concatenate this Toolset with another Tool, Toolset, or list of Tools.

Arguments:

  • other: Another Tool, Toolset, or list of Tools to concatenate

Raises:

  • TypeError: If the other parameter is not a Tool, Toolset, or list of Tools
  • ValueError: If the combination would result in duplicate tool names

Returns:

A new Toolset containing all tools

MCPToolset.__len__

python
def __len__() -> int

Return the number of Tools in this Toolset.

Returns:

Number of Tools

MCPToolset.__getitem__

python
def __getitem__(index)

Get a Tool by index.

Arguments:

  • index: Index of the Tool to get

Returns:

The Tool at the specified index